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Critical velocity for superfluidity in the one-dimensional mean-field regime:
From matter to light quantum fluids
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We determine in a nonperturbative way the critical velocity for superfluidity of a generic quantum fluid flowing
past a localized obstacle in the one-dimensional mean-field regime. We get exact expressions in the narrow- and
wide-obstacle limits and interpolate them numerically using an original relaxation algorithm for the stationary
problem. The existence of a Josephson-type critical current across a very high and slowly varying obstacle is
discussed. Particle losses, if present, are treated within an adiabatic approach of the dynamics giving results
in excellent agreement with full numerics. Relevant for experiments with quantum fluids of matter, of mixed
matter-light, and of light, our study paves the way for further nonperturbative investigations in higher dimensions
and beyond mean-field theory.
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I. INTRODUCTION

Superfluidity, one of the most striking manifestations of the
collective behavior of matter at low temperature, is the ability
of a quantum fluid to flow along a narrow capillary, beside
the wall of a bucket, or past a localized obstacle without any
loss of kinetic energy [1–3]. This spectacular phenomenon
consistently occurs below a specific flow speed, the so-called
critical velocity for superfluidity. It was evidenced for the first
time by Kapitza [4], Allen, and Misener [5] in experiments
with liquid helium-4 below the λ point, later followed by no
less pioneering experiments with liquid helium-3 in its paired
phase [6,7], ultracold atomic Bose [8–14] and Fermi [15]
gases, exciton-polariton condensates in semiconductor optical
microcavities [16,17], and more recently laser beams which
behave as quantum fluids when propagating in cavityless non-
linear dielectrics [18–20].

In the wake of the discovery of superfluidity in a flow of
helium-4 along a capillary [4,5], Landau theorized the phe-
nomenon [21,22], notably by being interested in the condition
under which the nucleation of an elementary excitation by
friction of the fluid with the capillary walls becomes ener-
getically favorable. This condition concerns the flow velocity
v, which Landau showed that the norm has to be larger than
the ratio of the energy ε(p) to the norm of the momentum
p of an elementary excitation in the fluid at rest. A fric-
tionless flow along the capillary is thus possible as long as
|v| < minp ε(p)/|p|, the right-hand side defining the critical
velocity for superfluidity. This is the celebrated Landau crite-
rion for superfluidity [3], which is sufficiently general to be
applied to quantum fluids other than superfluid helium-4 and
to flow configurations other than along a channel, for instance
when the fluid hits a localized obstacle. Despite its elegant
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simplicity—indeed, it only requires to know the dispersion
relation of the elementary excitations of the quantum fluid
at rest—Landau’s argument often overestimates the critical
velocity for frictionless motion, as noticed by Landau himself
in the context of helium-4 superfluidity [23]. This results
from the fact that it is by essence perturbative. Indeed, in a
quantum fluid like superfluid helium-4, energy losses manifest
not only through the emission of elementary excitations but
also through the generation of nonlinear excitations such as
quantized vortices [3], which are stimulated at flow speeds
smaller than the Landau critical velocity for superfluidity.
This was first understood by Feynman [24], who derived a
speed threshold for vortex proliferation much closer to the
experimental critical velocity for helium-4 superfluidity than
Landau’s theoretical counterpart.

Since Landau’s and Feynman’s seminal works, the precise
determination of the velocity marking the onset of super-
fluidity in a flowing quantum fluid continues to challenge
theoreticians. Boosted by related experiments with atomic
Bose-Einstein condensates [8–14], numerous theoretical in-
vestigations of the critical velocity for superfluidity in a
nonlinear Schrödinger [3] flow past a localized obstacle
emerged. Many of them are carried out in two [25–33] and
three [29,34–36] dimensions (2D and 3D) (see also Ref. [37]
for an extension of the results of Ref. [25] to resonantly driven
exciton-polariton condensates). Due to the nonintegrability of
the equations modeling the hydrodynamics of the superfluid
in these dimensions, these studies mostly rely on numerical
simulations and report analytical results only in a very few
limiting cases, often when the obstacle consists in an im-
penetrable disk or ball whose radius is very large compared
to the healing length [3] of the unperturbed quantum fluid.
In one dimension (1D) instead, exact solutions exist to the
tunneling of a nonlinear Schrödinger fluid through a poten-
tial barrier and analytical expressions for the corresponding
critical velocity for superfluidity can be obtained in various
obstacle geometries [38–52] (see also Refs. [53,54] for related

2469-9926/2022/105(2)/023305(14) 023305-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6593-0300
https://orcid.org/0000-0002-8273-3333
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.023305&domain=pdf&date_stamp=2022-02-03
https://doi.org/10.1103/PhysRevA.105.023305


J. HUYNH, M. ALBERT, AND P.-É. LARRÉ PHYSICAL REVIEW A 105, 023305 (2022)

works on light superfluidity in incoherently pumped exciton-
polariton condensates and in paraxial nonlinear optics). In this
dimension, the breakdown of superfluidity typically manifests
through the repeated emission of solitons [3], which are the
1D equivalents of the vortices discussed above.

In this paper, we determine in a nonperturbative way the
critical velocity for superfluidity of a generic quantum fluid
flowing past a localized obstacle in the 1D mean-field regime.
Our model of superflow, detailed in Sec. II, relies on a gen-
eralization of the 1D nonlinear Schrödinger equation to any
local self-interaction potential increasing with the fluid den-
sity. This makes it possible to describe various superfluid
systems ranging from ultracold atomic Bose and Fermi gases
[3] to exciton-polariton condensates in semiconductor optical
microcavities [55] and fluids of light [18–20,56–60], as re-
viewed in Appendix A. The localized obstacle we consider
is described by a smooth, even, and repulsive or attractive
potential characterized by a single extremum and a range of
arbitrary values, i.e., not restricted to the limits imposed by the
perturbative Landau criterion. Building atop Refs. [38–40],
we derive analytical results for the critical velocity, first
in the narrow-obstacle limit in Sec. III and Appendix B,
and then in the inverse, wide-obstacle limit in Sec. IV and
Appendix C. Following Ref. [61], the occurrence of a
Josephson-type critical current across a very high and slowly
varying obstacle is discussed at the end of Sec. IV with
Appendix D as support. The obstacle of arbitrary width is
numerically treated in Sec. V using an original relaxation
algorithm for the stationary problem. Especially important
in experiments on light superfluidity, we account for particle
losses in the model. We treat them in Sec. VI within an adi-
abatic approach [20,62,63] of the time evolution of the wave
function. This provides results for the critical velocity in very
good agreement with full numerics. We finally conclude and
give perspectives to the present work in Sec. VII.

II. SUPERFLUID HYDRODYNAMICS

A 1D quantum fluid of particles of mass m flows in the
positive-x direction. In the mean-field regime, information on
its density n(x, t ) (t is time) and velocity v(x, t ) = h̄θx(x, t )/m
(h̄ is the reduced Planck constant) is encapsulated in a com-
plex wave function ψ (x, t ) = n1/2(x, t ) exp[iθ (x, t )] whose
dynamics is supposed to be ruled by the following generalized
nonlinear Schrödinger equation:

ih̄ψt = − h̄2

2m
ψxx + U (x)ψ + g(|ψ |2)ψ − ih̄γ

2
ψ. (1)

The flow is here constrained by an obstacle described in
Eq. (1) by a smooth, even, and repulsive (attractive) po-
tential U (x) = U0 f (|x|/σ ) which attains its single positive
maximum (negative minimum) U0 at x = 0 and which is
localized, i.e., which vanishes as |x| � σ , with σ being
its typical range. For concreteness, the Gaussian potential
U (x) = U0 exp(−x2/σ 2) is of this type. The fluid is also sub-
jected to a self-interaction described in Eq. (1) by the local
nonlinear term g(|ψ |2 = n)ψ , where the potential g(n) is an
increasing function of the density n. Finally, the last term in
the right-hand side of Eq. (1) describes linear particle losses
with constant rate γ .

Equation (1) governs the dynamics of a wide variety of sys-
tems including, e.g., zero-temperature atomic Bose-Einstein
condensates and Fermi superfluids [3] in highly anisotropic
traps, exciton-polariton condensates [55] in wire-shaped semi-
conductor optical microcavities, and fluids of light [18–20,56–
60] in 1D geometries. We refer the reader to Appendix A for
further details. Although totally generic, the results we estab-
lish in the following will be often examplified in the case of
the saturable nonlinearity g(n) ∝ n/(ns + n) (ns > 0) specific
to the superfluid-light experiment of Ref. [20], one of the
flagship studies which have motivated the present work (see
fifth paragraph of Appendix A), and in the case of the standard
nonlinear Schrödinger potential g(n) ∝ n one has for dilute
ultracold bosonic atoms or condensed exciton-polaritons (see
second and fourth paragraphs of Appendix A). In what fol-
lows, we establish the hydrodynamic problem that the fluid
must satisfy in order to flow in a superfluid fashion past the
obstacle.

Replacing ψ (x, t ) with its density-phase representation
(see above) into Eq. (1) yields the following coupled
hydrodynamic-like equations for n(x, t ) and v(x, t ):

nt + (nv)x = −γ n,

mvt = −
[

mv2

2
+ U (x) + g(n) − h̄2

2m

√
nxx√
n

]
x

.
(2)

The first of Eqs. (2) expresses the conservation of the number
of particles when γ = 0. The second one is formally identical
to the Euler equation for the potential flow of an inviscid
classical fluid with some additional potential (last term in the
square brackets) of quantum origin [3]. It is worth noting that
the nonconservative term −γ n in the first of Eqs. (2) makes
the dynamics quite harsh to tackle analytically. To circumvent
this drawback, we temporarily set γ = 0 and postpone the
analysis of the effect of particle losses to Sec. VI.

In the absence of the obstacle, i.e., when U (x) = 0, the
simplest solutions of Eqs. (2) are homogeneous and station-
ary: n(x, t ) = n∞ = const and v(x, t ) = v∞ = const, which
describes a uniform and steady flow. In the comoving frame,
the elementary excitations of such a system (typically stimu-
lated by a weak external perturbation) obey the well-known
[3] Bogoliubov dispersion relation ε(p) = [g′(n∞)n∞ p2/m +
p4/(4m2)]1/2, from which we infer that the Landau criti-
cal velocity for superfluidity is the speed of sound c∞ =
[g′(n∞)n∞/m]1/2, slope of the linear branch of ε(p) for 0 <

p � h̄/ξ∞, where ξ∞ = h̄/(mc∞) denotes the healing length.
Figure 1 shows it against n∞ for g(n) ∝ n/(ns + n).

In the presence of the obstacle instead, n(x, t ) and v(x, t )
are no longer homogeneous. We search for them in the sta-
tionary forms n(x, t ) = n(x) and v(x, t ) = v(x) and suppose
that they smoothly approach n∞ and v∞, respectively, out of
range of U (x), i.e., as |x| � σ . These hypotheses are typical
of a superfluid flow, steady and devoid of any hydrodynamic
disturbance far away from the obstacle [40,65]. With this,
Eqs. (2) may be cast into a single equation for n(x):

h̄2

2m

√
n′′

√
n

+ mv2
∞

2

(
1 − n2

∞
n2

)
+ g(n∞) − g(n) = U (x), (3)

the solution of which determines the velocity according to
v(x) = v∞n∞/n(x). From now on, we simplify the notations
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FIG. 1. The solid curve represents the Landau critical velocity
for superfluidity c∞ (see main text) as a function of n∞ when g(n) ∝
n/(ns + n) (on the vertical axis, cs = [g′(ns )ns/m]1/2). The dashed
(densely dashed) curve represents the

√
n∞ (1/

√
n∞) behavior of c∞

at low (high) n∞ [64]. In the shaded area, the horizontal axis is set in
logarithmic scale to show the slow decreasing of c∞ at large n∞.

by expressing all the densities, velocities, lengths, and ener-
gies in units of n∞, c∞, ξ∞, and μ∞ = mc2

∞, respectively. In
these new variables, Eq. (3) takes the dimensionless form

1

2

√
n′′

√
n

+ v2
∞
2

(
1 − 1

n2

)
+ g(1) − g(n) = U (x), (4)

where n(x) → 1 as |x| � σ . Figure 2 gives a schematic pic-
ture of the solutions of Eq. (4) we are looking for. The
superfluid-nonsuperfluid transition, driven by the injection
flow velocity v∞ in Eq. (4), occurs when such solutions no
longer exist. This equivalently corresponds to the appearance
of an energetic instability in the time-dependent Eqs. (2) or
Eq. (1) [3]. Energy is in this case typically dissipated by the
emission of solitons [38–40].

It is instructive to linearize Eq. (4) for |x| � σ , there where
U (x) is zero and δn(x) = n(x) − 1 must be small. This gives
δn′′ − 4(1 − v2

∞)δn = 0, which admits suitable, vanishing so-
lutions only if v∞ < 1, i.e., if the incoming flow is subsonic.
One formally recovers Landau’s criterion for superfluidity but
to conclude that the critical velocity is the asymptotic speed
of sound would be very cavalier. Indeed, no small-amplitude

(a) σ �= 0
n(x)

� σ
n∞

v∞

U(x)
U0 ∼ σ

0 x = 0

(b) σ/ξ∞ → 0

∼ ξ∞

FIG. 2. (a) Schematic of the superfluid density (solid curve)
when the obstacle potential (dashed curve) is repulsive and of typical
width σ 	= 0. The density dip in its vicinity is smooth and its typical
width is <σ or ∼σ when σ/ξ∞ → ∞, where ξ∞ = 1 is the healing
length of the unperturbed fluid. (b) Same as in panel (a) but when
σ/ξ∞ → 0. In this limit, the obstacle potential can be approximated
by a Dirac δ function at the location of which the density dip has
a discontinuous derivative and a typical width ∼ξ∞. When the ob-
stacle potential is attractive, it induces a density bump of analogous
characteristics in its vicinity.

hypothesis has been made on U (x) while Landau’s approach
requires such a constraint to deal with elementary excitations.
On the other hand, it is a safe bet that the critical velocity
depends on the characteristics of U (x) while the present ap-
proach totally neglects U (x). Nonetheless, by telling one that
superfluidity cannot occur at supersonic injection speeds v∞,
it allows us to restrict ourselves to the regime v∞ < 1, which
provides an upper bound for the actual critical velocity.

Superfluidity actually depends on both the sign and the
shape of the obstacle potential. For repulsive potentials, we
show that it exists only if v∞ is smaller than a specific speed
vc < 1 function of the parameters of U (x) [and obviously of
g(n)]. For attractive potentials instead, we demonstrate that
it is the rule for any v∞ < 1. Analytical results are obtained
in the narrow- and wide-obstacle limits in Secs. III and IV,
respectively. The obstacle of arbitrary width is numerically
treated in Sec. V.

III. NARROW OBSTACLE

When the typical range of the obstacle potential is much
smaller than the healing length of the unperturbed fluid,
i.e., in dimensionless units, when σ � 1, it is possible to
approximate U (x) by U (x) = U0F (σ )δ(x), where F (σ ) is
the integral of f (|x|/σ ) over the whole real axis. For ex-
ample, with F (σ ) = √

πσ , this fairly approximates U (x) =
U0 exp(−x2/σ 2) at small width σ .

In this case and when U0 > 0 (repulsive obstacle potential),
we find that the critical velocity for superfluidity vc is a func-
tion of U0 and σ smaller than 1 implicitly given by [we define
the antiderivative G(n) = ∫

dn g(n)]

√
2

[
−v2

c

2

(
1 − 1

n0,c

)2

− g(1) + g(1) − G(1) + G(n0,c)

n0,c

] 1
2

= U0F (σ ), (5)

where n0,c < 1, the density of the fluid at x = 0 when v∞ =
vc, is solution of

n0,c

1 − n0,c
[g(1) − G(1) − g(n0,c)n0,c + G(n0,c)] = v2

c . (6)

The derivation of Eqs. (5) and (6) is carefully detailed in
Appendix B.

In Fig. 3, we plot vc as a function of U0F (σ ) for
g(n) = (1 + ns)2n/[ns(ns + n)] with ns ∈ {0.1, 1, 10} and for
g(n) = n [saturable potential g(n) ∝ n/(ns + n) and nonlinear
Schrödinger potential g(n) ∝ n, respectively, in units of μ∞;
see Sec. II]. A few comments are in order. First, one sees
that vc → 1 as U0F (σ ) → 0. This is in agreement with what
the Landau criterion for superfluidity forecasts in this case:
In the presence of a weakly perturbing obstacle, the fluid
dissipates energy only through the emission of Bogoliubov
excitations, whose phase velocity has for minimum c∞, i.e.,
in dimensionless units, 1 (see Sec. II). On the other hand,
vc decreases and tends to 0 as U0F (σ ) increases, which is
physically expected too: The stronger the obstacle, the greater
the resistance to it and the less likely superfluidity is to occur.
Finally, it is interesting to note that the critical velocity for
light superfluidity (red curves in Fig. 3) majorizes the one
associated to the standard nonlinearity g(n) = n (blue curve).
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FIG. 3. Critical velocity for superfluidity vc for a δ-peaked ob-
stacle potential of amplitude U0F (σ ) > 0 [Eqs. (5) and (6)]. The two
types of nonlinearity g(n) considered here are indicated in the legend.
They almost coincide and thus approximately give the same vc when
ns is large, which can be seen on the graph where the densely dashed
curve almost merges with the blue solid one.

This gives credit to fluid-of-light experiments for studying
superfluidity [18–20,60], which should be more robust against
short-range perturbations than in experiments with bosonic
atoms or exciton-polaritons (disregarding photon absorption
which has the tendency to reduce the critical velocity; see
Sec. VI). The same behavior is observed for long-range ob-
stacle potentials (see Fig. 4 afterwards).

When U0 < 0 (attractive obstacle potential), we find that
the flow can be superfluid for all v∞ < 1, hence vc = 1 for all
U0F (σ ) (see Appendix B). This makes Landau’s prediction
valid even for large negative values of U0F (σ ), as already
found in Ref. [40] for g(n) = n. This can be understood within
some local-density reformulation of the Landau criterion for
superfluidity [38,42–44], although it is not really appropriate
in the narrow-obstacle limit σ � 1. This approach is dis-
cussed at the start of Sec. IV where its condition of validity
(σ � 1) is satisfied.

IV. WIDE OBSTACLE

In the wide-obstacle limit σ � 1, the gradients of U (x) are
small and so the fluid behaves almost as if it were uniform.
This makes it possible to define a speed of sound c(x) =
{g′[n(x)]n(x)}1/2 [and then a healing length ξ (x) = 1/c(x), a
“chemical potential” μ(x) = c2(x), etc.] at any point x. This
is the local-density approximation [3]. According to Landau’s
criterion, the flow past the obstacle thus should be superfluid
as long as the local flow velocity v(x) = v∞/n(x) does not
exceed the local sound velocity c(x) [38,42–44]. This con-
dition straightforwardly reformulates into v∞ < vc,LL, where
the critical velocity for superfluidity

vc,LL = [
g′(nmin)n3

min

] 1
2 (7)

(“LL” stands for “local Landau”) stems from the minimum
nmin of the density n(x). When the obstacle potential is re-

pulsive, x = 0 is the point where the particles are expelled
the most (see Fig. 2). As a result, nmin = n(0) = n0 < 1 and
vc,LL = [g′(n0)n3

0]1/2 < 1. When the obstacle potential is at-
tractive instead, x = ±∞ is the place where the particles mass
together the less (see Fig. 2 and remark at the end of its
caption). Thus nmin = n(±∞) = 1 and vc,LL = 1.

Although a priori limited to perturbative obstacles (it is
based on Landau’s criterion), the phenomenological approach
detailed above is also accurate to describe the superfluid
transition in the case of nonperturbative obstacles. We con-
firm this by determining the obstacle dependence of the
critical velocity for superfluidity vc from a rigorous multiple-
scale treatment of the obstacle potential when σ � 1. We
take the latter in the form U (x) = U0[1 + f ′′(0)x2/(2σ 2)],
where the terms in square brackets correspond to the series
expansion of f (|x|/σ ) to second order in 1/σ � 1. For ex-
ample, with f ′′(0) = −2, this fairly approximates f (|x|/σ ) =
exp(−x2/σ 2) at large σ . In the following, we report and dis-
cuss the main results only, and refer the reader to Appendix C
for the details of their derivation.

When U0 > 0 (repulsive obstacle potential), we get the
following formula for vc as a function of U0, f ′′(0) < 0, and
σ :

vc = v̄c + C

2
5
3

[U0| f ′′(0)|n̄0,c]
2
3

v̄c
(

1
n̄0,c

− n̄0,c
)[ 3v̄2

c

n̄3
0,c

+ g′′(n̄0,c)n̄0,c
] 1

3

1

σ
4
3

, (8)

where C � 1.466. In Eq. (8), v̄c denotes the critical velocity
resulting from the first, σ -independent contribution to the
series expansion of U (x) written above. It is smaller than 1
and its single dependence on U0 is implicitly given by

v̄2
c

2

(
1 − 1

n̄2
0,c

)
+ g(1) − g(n̄0,c) = U0, (9)

where n̄0,c < 1, the zeroth-order density of the fluid at x = 0
when v∞ = v̄c, is solution of

g′(n̄0,c)n̄3
0,c = v̄2

c . (10)

As defined by Eq. (10), v̄c coincides with the critical velocity
vc,LL deduced from the local Landau criterion for superfluid-
ity [see discussion after Eq. (7)]. This removes the bias one
could have on its accuracy to capture the superfluid transition
in the case of arbitrary-high wide obstacles. Meanwhile, the
nontrivial 1/σ 4/3 correction to v̄c in Eq. (8) results from the
second, 1/σ 2 term in the series expansion of U (x). One sees
that it is positive, which is actually natural: At a fixed U0, the
narrower the obstacle, the easier it is for the fluid to cross it,
thus favoring superfluidity.

In the following, we mainly focus on v̄c which we plot
in Fig. 4 as a function of U0 for the same parameters as the
ones used in Fig. 3. The 1/σ 4/3 decreasing of vc at large
σ will be shown in Sec. V where we numerically get all
the σ dependence of the critical velocity. Comparing Fig. 4
to Fig. 3, the same qualitative behavior is observed for v̄c,
except that the latter identically vanishes at U0 = U0,max =
g(1) − g(n̄0,c|v̄c=0 = 0) [see Eqs. (9) and (10)]. For exam-
ple, U0,max = (1 + ns)/ns when g(n) = (1 + ns )2n/[ns(ns +
n)] and U0,max = 1 when g(n) = n [more generally, U0,max =
1/ν when g(n) = nν/ν, i.e., g(n) ∝ nν in units of μ∞; see
second and third paragraphs of Appendix A for examples
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FIG. 4. Same as Fig. 3 but for a wide obstacle potential of max-
imum amplitude U0 > 0, at zeroth order in its inverse range 1/σ

[Eqs. (9) and (10)]. Each curve drops to zero at a specific U0 = U0,max

(see main text). In the case of the red solid (dashed, densely dashed,
blue solid) curve, U0,max = 11 (2, 1.1, 1). The inset magnifies the
low-U0 regime.

with ν 	= 1]. This abrupt cancellation of v̄c can be explained
by simple words: The fact that n̄0,c = 0 when U0 = U0,max

means that the fluid is for such an obstacle fragmented into
two disconnected parts on either side of x = 0; superfluidity
is impossible in this situation, hence v̄c = 0.

In reality, tunneling through the potential barrier always
occurs when U0 > U0,max, but this cannot be captured within
our multiple-scale analysis where the derivatives of the fluid
density are assumed to scale as positive powers of 1/σ � 1,
and even less at the here-discussed zeroth order where they
are identically null. Indeed, the greater the density depletion in
the vicinity of x = 0, the less valid such a small-gradient hy-
pothesis in this region of space is. When U0 is very large, the
obstacle actually behaves as the insulator layer of a Joseph-
son junction crossed by a (conserved) supercurrent density
j = n(x)v(x) = v∞ = vc sin(θR − θL) (θR − θL is the phase
difference between the right and the left of the density deple-
tion) whose amplitude vc, which naturally defines the critical
velocity for superfluidity, is certainly very small but not zero
(see Refs. [45–50] which mostly focus on δ-shaped obsta-
cles). In the limit σ � 1, a WKB treatment of Eq. (1) can
be performed to get this vc at very large U0. This is done in
Appendix D where vc is found to be given by

vc = A exp

{
−

√
2

∫ xcl

−xcl

dx [U (x) − μ]
1
2

}
, (11)

where μ is the stationary-state energy of the quantum fluid and
±xcl are its classical turning points, solutions of U (±xcl ) =
μ. The amplitude A is a nontrivial function of the obstacle
parameters; in Appendix D, it is shown to be proportional to
|U ′(±xcl )|(2+ν)/(3ν) when g(n) = nν/ν.

When U0 < 0 (attractive obstacle potential), we find, as
in the case of the attractive δ peak, that vc = 1 for all U0,
in accordance with the local Landau criterion for superfluid-
ity [see discussion after Eq. (7)]. This result is analytically

provable at zeroth order in 1/σ (see Appendix C). We nu-
merically checked that it persists beyond—and even well
beyond—zeroth order for the realistic obstacle potential
U (x) = U0 exp(−x2/σ 2) and the different self-interaction po-
tentials g(n) given in Appendix A.

V. OBSTACLE OF ARBITRARY WIDTH

Now that we understand the two extreme cases of a narrow
(σ � 1) and a wide (σ � 1) obstacle, we move to the generic
situation of a localized U (x) = U0 f (|x|/σ ) of arbitrary range,
restricting to the case U0 > 0 for which the critical velocity
for superfluidity is not trivial (see last paragraphs of Secs. III
and IV). Unfortunately, it is not possible to analytically solve
Eq. (4) for any σ and we thus have to resort to a numerical
integration of it. In the following, we quite generically take
f (|x|/σ ) = exp(−x2/σ 2). Again, the separatrix between the
superfluid and nonsuperfluid regimes is given by the thresh-
old of disappearance of a subsonic stationary density profile
smoothly approaching unity at infinity. This criterion, applied
to the time-independent Eq. (4) we focus on, actually cor-
responds to the appearence of an energetic instability in the
time-dependent Eqs. (2) or Eq. (1) [3].

Numerically solving Eq. (4) with boundary conditions at
infinity is actually cumbersome. For instance, a shooting
method could be applied to this problem but eventually hap-
pens to be poorly efficient. We chose instead to use a method
inspired by out-of-equilibrium statistical physics, which we
sketch the contours right after. If the superfluid solution exists,
it should be an attractor of the following fictitious dynamical
system:

nτ = 1

2

√
nxx√
n

+ v2
∞
2

(
1 − 1

n2

)
+ g(1) − g(n) − U (x). (12)

We start the integration with a solution which has the
proper asymptotic properties—typically the very simple ho-
mogeneous density n(x; τ = 0) = 1—and let it evolve in the
fictitious time τ according to the equation of motion (12).
After some time, the solution n(x; τ ) converges to the attractor
if the latter exists. If not, this means that the system is not
superfluid.

This relaxation method is rather simple, efficient, and
accurate, as can be seen in Fig. 5. Figure 5(a) displays
the critical velocity for superfluidity vc as a function of
σ for U0 = 0.5, g(n) = (1 + ns)2n/[ns(ns + n)] with ns ∈
{0.1, 1, 10}, and g(n) = n. While the analytical results given
by Eqs. (5) and (6) and by Eqs. (8)–(10) are perfectly recov-
ered at respectively small and large σ , the critical velocity
is shown to vary monotonically from one limit to another.
Figure 5(b) displays the result for g(n) = (1 + ns)2n/[ns(ns +
n)] with ns = 1 and U0 ∈ {0.5, 1, 2}, the latter value of U0

corresponding to the maximum obstacle strength U0,max =
(1 + ns)/ns above which superfluidity is lost in the small-
gradient approach yielding Eqs. (8)–(10).

Although the method is illustrated in Fig. 5 for two specific
g(n)’s, we have checked that the agreement is similar for other
nonlinearities. The only drawback of the method is the de-
termination of vc for U0 > U0,max where the physics strongly
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FIG. 5. Critical velocity for superfluidity vc as a function of the
typical range σ of the obstacle potential U (x) = U0 exp(−x2/σ 2),
supposed to be repulsive (U0 > 0). It is determined from the nu-
merical integration of the fictitious time-dependent problem (12):
The critical frontier v∞ = vc is crossed from the moment when the
algorithm is no longer able to converge towards an attractor with the
correct boundary conditions at infinity. On both plots, the numerical
points are artificially joined by solid segments to guide the eye. In
(a), vc is plotted at a fixed U0 and for four different g(n)’s (see title
and legend). The two types of g(n) considered here almost coincide
and thus approximately give the same vc when ns is large, which can
be seen on the graph where the crossed data almost coincide with
the squared ones. The asymptotic results (5) and (6) (σ � 1, dashed
curves) and (8)–(10) (σ � 1, densely dashed curves) are in perfect
agreement with numerics. For the sake of lisibility, they are only
shown on top of the triangled and squared data. In (b), vc is plotted at
a fixed g(n) and for three different U0’s (see title and legend). When
U0 = U0,max, one sees that vc drops to zero at large σ , in conformity
with the approach yielding Eqs. (8)–(10).

depends on the gradients of the density and is actually ruled
by the Josephson effect (see second-last paragraph of Sec. IV).
It is however possible to improve the relaxation algorithm by
letting U (x) depend on the fictitious time τ in Eq. (12) and by
slowly increasing its amplitude from U0 = U0,max. This yields
exponentially small critical velocities of the type (11).

VI. EFFECT OF PARTICLE LOSSES

So far, we have considered the dynamics to be conserva-
tive by neglecting particle losses, described by the γ term
in Eq. (1). However, in actual experiments, this term might
nonnegligibly contribute to the dynamics. For example, in the
fluid-of-light experiment of Ref. [20], photon absorption is
estimated to be about 30% of the input light intensity after
propagation through the crystal. Losses are thus significant in
this study but superfluid features are not thereby destroyed, as
previously observed in exciton-polariton quantum fluids, yet
very nonequilibrium by nature [55]. The authors of Ref. [20]
justify their observations by invoking the principle of adi-
abatic evolution, also used in Refs. [62,63] and which we
explain in the following lines.

If losses manifest on a time scale 1/γ much longer than any
other hydrodynamic time [ξ∞/c∞ = h̄/μ∞, the time needed
to generate an excitation, etc.], it is reasonable to assume
that the full dynamics of the fluid must adiabatically follow
the time variations of its unperturbed density, which in our
case decays exponentially as n∞(t ) = n∞(0) exp(−γ t ) since
losses are supposed to be linear. In the context of Ref. [20],
with t = z (see fifth paragraph of Appendix A), this is nothing
but the Beer-Lambert attenuation law for the optical intensity.
This somehow amounts to treating the fluid as if it were in
a stationary equilibrium state at each time t , decribed by
Eq. (4) where the densities, velocities, lengths, and ener-
gies are respectively expressed in units of the instantaneous
density n∞(t ), sound speed c∞(t ) = {g′[n∞(t )]n∞(t )/m}1/2,
healing length ξ∞(t ) = h̄/[mc∞(t )], and “chemical potential”
μ∞(t ) = mc2

∞(t ).
The purpose of this section is to provide a convincing nu-

merical proof of this argument, focusing on the central object
of the paper, namely the critical velocity for superfluidity. If
correct, this adiabatic-evolution approximation should predict
a critical velocity ṽc(t ) not too far from the critical velocity
vc(t ) deduced from the numerical integration of the time-
dependent Eq. (1) with γ 	= 0, if properly definable. We show
that it is the case, and even that the agreement is extremely
good for losses of the type of Ref. [20].

For concreteness, we numerically integrate Eq. (1) with
U (x, t ) = U0 exp[−(x + v∞t )2/σ 2] (by a trivial change of
reference frame, this is equivalent to the flow configuration
studied so far). This brings two important pieces of informa-
tion on the superfluid-nonsuperfluid transition. First, the latter
is not as sharp as in the conservative case. Losses have the
tendency to smooth out the transition, as already observed
in exciton-polariton condensates [55] and which in principle
undermines the very concept of critical velocity. Nonetheless,
for losses of the type of Ref. [20], the drag force experienced
by the obstacle, naturally defined as the average value of
Ux(x, t ) over the wave function ψ (x, t ) [40], still increases
very fast from (almost) zero on a narrow window of values of
v∞ [53,66,67], which makes it possible to identify an effective
critical velocity for superfluidity vc(t ) without too many errors
(details are provided in the caption of Fig. 6). Second, this
vc(t ) is smaller than the critical velocity in the absence of
losses. This can be understood within the adiabatic-evolution
hypothesis sketched above (and which we show the validity
in Fig. 6). Indeed, a lower density [n∞(t ) < n∞(0)] implies
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FIG. 6. Same as Fig. 5 for g(n) ∝ n but in the presence of particle
losses [γ term in Eq. (1)]. The propagation time is here fixed to
μ∞(0)t/h̄ = 75, the obstacle height to U0/μ∞(0) = 0.2, and the loss
rate to the three dimensionless values h̄γ /μ∞(0) indicated on the
plot. The markers correspond to the critical velocity for superfluidity
vc(t ) obtained by numerically integrating Eq. (1). They are tainted
with vertical error bars corresponding to the intervals of values of v∞
over which the drag force experienced by the obstacle (see main text)
increases from 2% to 8% of its value at v∞ = c∞(t ) > vc(t ). Given
the losses considered here, this provides correct confidence intervals
for the superfluid-nonsuperfluid transition. The shaded regions guide
the eye from one error bar to another. The curves correspond to the
critical velocity for superfluidity ṽc(t ) deduced from the numerical
integration of Eq. (12) in our adiabatic-evolution approximation. In
fact, they correspond to the solid segments used in Fig. 5 to guide
the eye from one numerical point to another. The agreement between
vc(t ) and ṽc(t ) is excellent, which validates the adiabatic hypothesis.

a smaller sound velocity [c∞(t ) < c∞(0)] and therefore not
only the Landau critical velocity, which gives a rough esti-
mate of the actual critical velocity, is reduced but also the
dimensionless amplitude of the obstacle potential is increased
[U0/μ∞(t ) > U0/μ∞(0)], making the superfluid window
narrower.

Figure 6 displays vc(t )/c∞(0) as a function of σ/ξ∞(0)
at the dimensionless time μ∞(0)t/h̄ = 75 for U0/μ∞(0) =
0.2 and h̄γ /μ∞(0) ∈ {0, 0.002, 0.01}. The nonlinearity g(n)
considered here is proportional to the density n [68]. At
the time t and in between the two latter values of γ given
above, losses range from about 14% to 53% of the initial
unperturbed density, interval into which the photon absorption
measured in the experiment of Ref. [20] falls down. Most
importantly, we compare on the plot vc(t ) with its adiabatic
counterpart ṽc(t ). The latter is deduced from the numerical
integration of the fictitious problem (12) where the dimen-
sionless densities, velocities, lengths, and energies are such
as defined in the second paragraph of the present section. For
the sake of coherence, the algorithm behind Eq. (12) thus
must be run for U0/μ∞(t ) = exp(γ t )U0/μ∞(0) � 0.232 and
σ/ξ∞(t ) = exp(−γ t/2)σ/ξ∞(0) � 0.928σ/ξ∞(0) when we
choose γ = 0.002 in Eq. (1), and for U0/μ∞(t ) � 0.423 and
σ/ξ∞(t ) � 0.687σ/ξ∞(0) when γ = 0.01. The agreement is
excellent, which gives much credit to the adiabatic approach

for explaning absorption features observed in typical experi-
ments on light superfluidity [18–20,60], for example.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have studied the critical velocity for
superfluidity of a generic quantum fluid flowing past a smooth
localized obstacle of arbitrary amplitude and width in the
1D mean-field regime. Our model of superflow relies on a
generalization of the 1D nonlinear Schrödinger equation to
any local self-interaction potential increasing with the fluid
density and to the eventuality of particle losses in the system,
which we have treated within an accurate adiabatic approach
[20,62,63] of the fluid dynamics. Importantly, we have com-
puted this critical velocity beyond the Landau criterion for
superfluidity, which is valid only for weak-amplitude obsta-
cles. We have derived nonperturbative exact expressions for
the latter in the narrow- and wide-obstacle limits (follow-
ing Refs. [38–40]), numerically computed it for any obstacle
width using an original relaxation algorithm for the stationary
problem, and quantitatively analyzed the residual Josephson-
type tunneling occurring through a very high and slowly
varying barrier (following Ref. [61]). Together with previ-
ously mentioned existing studies [38–54], this now gives a
very broad picture of the critical velocity for superfluidity in
the 1D mean-field regime.

Many experimental systems are well described by the
generalized nonlinear Schrödinger equation (1) and our pre-
dictions can be tested and used in several ways. Concrete
examples are reviewed in detail in Appendix A. These include
ultracold atomic Bose-Einstein condensates and Fermi super-
fluids [3] tightly confined along a line using highly anisotropic
traps, exciton-polariton condensates [55] in wire-shaped semi-
conductor optical microcavities, and fluids of light [18–20,56–
60] in effective 1D configurations.

In the condensates, the obstacle is usually created from the
interaction between the vapor and an external laser [8–14].
The width of the obstacle (related to the waist of the laser)
and the healing length can be controlled independently and
chosen to be of the same order or different by at least one
order of magnitude, so does its relative amplitude (related
to the intensity of the laser) to the chemical potential. The
relative motion between the fluid and the obstacle can be
monitored either by sweeping the laser through the conden-
sate [11] or by exciting dipole oscillations in the gas [13].
Then, the superfluid-nonsuperfluid transition can be probed
by measuring the threshold of appearance of excitations or of
the damping of the system’s dipole oscillations. Similar ex-
periments can be conducted with fermionic superfluids [15].

In experiments with polaritons [16,17], the flow of the fluid
around some structural defect in the cavity is usually gener-
ated by means of a resonant pump in nonzero incidence with
the sample. The superfluid-nonsuperfluid transition, charac-
terized by the appearance of disturbances in the fluid density,
is revealed in both the near- and far-field images of the
light outgoing from the cavity. In related experiments based
on coherent light propagating in saturable nonlinear optical
media [19,20], often discussed in this work, superfluidity
manifests in the paraxial diffraction of a laser in grazing
incidence on an elongated refractive-index defect induced by a
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second laser. The incidence angle determines the flow velocity
and the parameters of the defect, the ones of the obsta-
cle. The superfluid-nonsuperfluid transition can be extracted
from the measurement of an optical analog of the drag force
experienced by the obstacle [19] or from the real-space imag-
ing of the transmitted intensity, which is defect-disturbed or
not [20].

As a perspective to the present theoretical work, it is natural
to raise the question of the critical velocity for superfluidity
in the 2D or 3D mean-field regime. As mentioned in the
introduction, most of our knowledge is restricted to wide
impenetrable obstacles in the standard nonlinear Schrödinger
framework [nonlinearity of the form g(n) ∝ n] [25–37]. A
systematic study of the critical velocity, along the lines of the
present work, is therefore highly desired; first in the presence
of a single but penetrable impurity for various types of non-
linearity, but also in the presence of several defects or even
a random environment. In the latter case, the critical velocity
becomes a random variable [44] whose statistical properties
are so far completely unknown in 2D and 3D.

In any dimension, increasing the velocity of the superfluid
brings the system into a time-dependent turbulent regime.
This regime is called turbulent in the sense that maintain-
ing a constant flux continuously creates excitations such as
quantized vortices. These excitations interact with each other
and may lead to quantum turbulence [69]. However, at even
higher velocity, the proliferation of excitations is strongly
reduced due to the fact that all energy scales become negli-
gible compared to the kinetic energy (provided the obstacle
is penetrable). Concretely, nonlinear Schödinger equations of
the type (1) predict the existence of stationary solutions above
some supersonic separatrix which should depend on the fluid
and obstacle characteristics. This stationary regime is remi-
niscent of the noninteracting case described by linear-wave
physics with however nonlinear modifications of the wave
patterns. The equation of this separatrix is only known in
the case of the 1D nonlinear Schrödinger equation [39,70,71]
(see also Ref. [53] for a numerical estimate of the latter
in the case of a 1D incoherently pumped exciton-polariton
condensate). It is therefore needed to develop a more general
theory for it [arbitrary dimension, arbitrary g(n)], all the more
so as experimental data are available in 2D for a saturable
nonlinearity [20]. In 1D specifically, it could in principle be
obtained from Eq. (4) with v∞ = v(x → +∞) > 1 by means
of procedures similar to the ones used in this paper. We leave
this for future work.

Another important perspective of this work is to under-
stand the effect of quantum fluctuations on the superfluid-
nonsuperfluid transition. Indeed, nonlinear Schrödinger-type
equations only describe the dynamics of the mean-field state
of superfluids, if it exists. If not, as it is the case in re-
duced dimensions on length scales smaller than the phase
coherence length, in the presence of large interactions, or
for small particle numbers, fully quantum descriptions are
needed. Theoretical works [72–80] already investigated super-
flows past heavy impurities beyond the mean-field regime, in
the weak- and strong-interaction limits, but yet only a very
few (mainly Ref. [76]) went beyond a perturbative treatment
of the obstacle as we do (at the mean-field level) in the present
paper.
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APPENDIX A: SUPERFLUIDS DESCRIBED BY EQ. (1)

The generalized nonlinear Schrödinger equation (1) rules
the mean-field dynamics of various 1D superfluid systems
which we give four examples in this Appendix.

For instance, with γ = 0, Eq. (1) accurately describes the
evolution of a zero-temperature dilute Bose-Einstein conden-
sate of weakly repulsive identical atoms of mass m in a
harmonic trap of angular frequencies ωx � ωy = ωz = ω⊥,
i.e., highly asymmetric to make the dynamics of the conden-
sate quasi-1D along the x axis [3]. In this context, the obstacle
potential U (x) can be realized by crossing the cigar-shaped
atomic cloud, elongated in the x direction, with a detuned
laser beam of y (or z) axis and whose waist in the z (or y)
direction is larger than the typical transverse size of the con-
densate [11]. On the other hand, the self-interaction potential
g(n), functional of the longitudinal density n(x, t ) of the con-
densate, is given by g(n) = 2h̄ω⊥nas when nas � 1 and by
g(n) = 2h̄ω⊥(nas)1/2 when nas � 1 [81,82], where as is the
s-wave scattering length of the two-body interaction potential.
Finally, the flow of the Bose fluid in the positive-x direction
can be simulated by sweeping the laser sheet creating the
obstacle in the negative-x direction [11] and then by looking
at the whole system in the reference frame of the obstacle.

Always with γ = 0, Eq. (1) is also well suited to describe
the evolution of a zero-temperature dilute Fermi gas of in-
teracting spin-1/2 atoms of mass m/2 in the same trapping
configuration as the one depicted right above [3]. The ob-
stacle potential U (x) experienced by the opposite-spin and
-momentum pairs which form at zero temperature can be pro-
duced by means of laser techniques similar to the one sketched
in the previous paragraph [15]. For what concerns g(n), an
expression for which as a functional of the longitudinal pair
density n(x, t ) was notably obtained in the unitary limit using
some Gaussian variational ansatz for the radial wave function
of the atomic cloud [83]. This expression simplifies to g(n) =
C1h̄ω⊥(na⊥)2/3 when na⊥ � 1 and to g(n) = C2h̄ω⊥(na⊥)2/5

when na⊥ � 1, where C1 � 2.968 and C2 � 2.940 are con-
stants of which only the numerical values are given here and
a⊥ = [2h̄/(mω⊥)]1/2 is the oscillator length of the transverse
harmonic confinement felt by the atoms. The flow of the Fermi
fluid in the positive-x direction can be simulated in the same
manner as the one described in the previous paragraph [15].

Equation (1) is also encountered in the optical realm. For
instance, it phenomenologically models the evolution of a
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condensate of exciton-polaritons of effective mass m in a
semiconductor optical microcavity designed in the form of a
1D guide of x axis, disregarding possible polarization effects
of the light modes in the cavity [55]. In this context, the
obstacle potential U (x) typically results from the presence of
a structural defect in the device [16]. It can also be artificially
created by means of lithographic techniques or using a CW
laser. On the other hand, there is a whole body of evidence
showing that the overall effective interaction potential g(n) be-
tween exciton-polaritons is repulsive and linearly scales with
the exciton-polariton density n(x, t ) [84]. Importantly, the last
term in the right-hand side of Eq. (1) describes the effect
of cavity losses due to the finiteness of the exciton-polariton
lifetime, proportional to 1/γ . To maintain the system in time,
the latter then needs to be optically pumped. Not included
in Eq. (1), both phenomenological and microscopic pumping
schemes are reviewed in Ref. [55]. In many experiments, the
exciton-polariton condensate is put into motion with respect
to the obstacle using a resonant pump in nonzero incidence
with the sample [16].

Always in optics and as a last example, Eq. (1) is also
used to describe the propagation of a scalar laser field in
a local nonlinear medium. Its applications range from both
fundamental and applied nonlinear dynamics [85,86] to the
simulation of atomic physics with light [18–20,56–60]. In
this classical-optics framework, the reduced Planck constant is
absent from Eq. (1) (formally, h̄ = 1), t = z is the propagation
coordinate of the laser carrier, m is its propagation constant (or
the opposite inverse of the group-velocity dispersion in fiber
optics), x is one of the two paraxial coordinates (or time), and
U (x) describes some spatial (or temporal) inhomogeneity in
the linear refractive index invariant along the z axis [19,20].
In the latter experiments, the 1D regime of Eq. (1) could
be obtained by shaping both the laser and the index defect
in a way that they are invariant along the y axis. Regarding
g(n), it linearly increases with the light intensity n(x, t ) in a
defocusing Kerr medium [85,86]. In a defocusing saturable
medium like the nonlinear photorefractive crystal used in
the experiments of Refs. [19,20], it is of the form g(n) =
πN3r33E0n/[λ0(ns + n)], where N and r33 are respectively the
mean refractive index and the electro-optic coefficient of the
crystal along the extraordinary axis, E0 is the amplitude of
an electric field applied to the crystal along the c-axis, λ0 is
the wavelength of the laser carrier in free space, and ns is a
saturation intensity adjusted by illuminating the crystal with
white light. It is worth noting that light suffers from linear
(mainly) absorption in such a material. This is described by
the γ term in Eq. (1), proportional to the imaginary part of
the linear electric susceptibility [85,86]. Finally, by tilting the
laser at a small angle to the index defect, we optically simulate
the flow of an atomic quantum fluid past an obstacle [19,20].

APPENDIX B: DERIVATION OF EQS. (5) and (6)

In this Appendix, we detail the calculations leading to
Eqs. (5) and (6) giving the critical velocity for superfluidity
vc in the case of an obstacle potential of the form U (x) =
U0F (σ )δ(x) [U (x) = U0 f (|x|/σ ) in the limit σ � 1, with
F (σ ) being the integral of f (|x|/σ ) over the whole real axis].
These calculations are inspired by previous studies [38–40]

FIG. 7. The curve represents U (n0, v∞) as a function of n0

[Eq. (B1)] for v∞ = 0.5 and g(n) = (1 + ns )2n/[ns(ns + n)] with
ns = 1. In this case, ñ0(v∞) � 0.178, n0,min(v∞) � 0.273, and
Umax(v∞) � 0.902. When U0F (σ ) > 0 [upper line, U0F (σ ) = 0.6
on the plot], the graph shows that U (n0, v∞) = U0F (σ ) admits
solutions (abscissas of the two upper markers) provided U0F (σ ) <

Umax(v∞). The physical solution is the largest because it is the only
one approaching 1 as U0F (σ ) → 0, in accordance with perturbation
theory. When U0F (σ ) < 0 [lower line, U0F (σ ) = −0.4 on the plot],
the graph suggests that U (n0, v∞) = U0F (σ ) always admits a solu-
tion (abscissa of the lower marker).

which mostly focus on the standard nonlinear Schrödinger
potential g(n) = n.

For such a δ-peaked obstacle, the solutions of Eq. (4)
going to unity at both infinities are given by n′(x) =
sgn(x)2nU (n, v∞) for all x 	= 0 [Eq. (4) with U (x) = 0 in-
tegrated over the whole real axis], where

U (n, v∞)= sgn(1 − n)
√

2

[
−v2

∞
2

(
1 − 1

n

)2

− g(1) + g(1) − G(1) + G(n)

n

] 1
2

, (B1)

with G(n) = ∫
dn g(n). We match these solutions at x = 0

with [n′(0+) − n′(0−)]/(4n0) = U0F (σ ) [Eq. (4) integrated
over an infinitesimal-length interval containing the origin],
where n0 = n(0). Everything combined yields U (n0, v∞) =
U0F (σ ) [87], the condition of existence of the solutions n0

of which defines vc. To understand it, we plot U (n0, v∞) as
a function of n0 at a given v∞ and focus on its intersections
with U0F (σ ) ≷ 0. This is done in Fig. 7 for v∞ = 0.5 and
g(n) = (1 + ns)2n/[ns(ns + n)] with ns = 1, but nothing qual-
itatively changes for other v∞’s and g(n)’s.

When U0 > 0 (repulsive obstacle potential), U0F (σ ) al-
ways intersects U (n0, v∞) provided it is smaller than the
maximum Umax(v∞) of U (n0, v∞), reached at a n0 =
n0,min(v∞) solution of Un0 [n0,min(v∞), v∞] = 0, i.e.,

n0,min(v∞)

1 − n0,min(v∞)
{g(1) − G(1) − g[n0,min(v∞)]n0,min(v∞)

+ G[n0,min(v∞)]} = v2
∞. (B2)
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Since Umax(v∞) is a decreasing function of v∞ (see below),
U0F (σ ) < Umax(v∞) equivalently reads v∞ < vc, where vc is
a function of U0F (σ ) implicitly given by

Umax(vc) = U0F (σ ). (B3)

Equations (B1)–(B3) are basically Eqs. (5) and (6). No simple
expression for Umax(vc) exists in the case of the g(n)’s consid-
ered in this work, except when g(n) = n for which Eq. (B3)
reads [38–40]

[
1 − 20v2

c − 8v4
c + (

1 + 8v2
c

) 3
2
] 1

2

2
√

2vc

= U0F (σ ). (B4)

The fact that Umax(v∞) decreases with v∞ can be checked
in a graphical way and understood as follows. When the
fluid velocity increases, kinetic effects gradually prevail over
interaction-induced phenomena like superfluidity, the break-
down of which is prevented by an effective reduction of the
perturbation potential. At last, it is worth noting that there
are two possible solutions n0 to U (n0, v∞) = U0F (σ ) (see
Fig. 7). In fact, the largest is the physical one. Indeed, the latter
is the only one approaching 1 as U0F (σ ) → 0, in accordance
with perturbation theory. This indicates that at a fixed v∞,
n0,min(v∞) corresponds to the smallest possible value of the
density at x = 0, hence the subscript “min.” It is reached when
v∞ = vc, denoted by n0,c in the main text.

Finally, when U0 < 0 (attractive obstacle potential), Fig. 7
suggests that there is no lower bound on U0F (σ ) for it to
intersect U (n0, v∞). This means that the flow can be su-
perfluid for all v∞ < 1, hence vc = 1 for all U0F (σ ). This
result is rigorously valid for continuously increasing g(n)’s,
e.g., for g(n) = nν/ν with ν > 0. In the case of the saturable
g(n) used in Fig. 7, U (n, v∞) given in Eq. (B1) tends to
−(−v2

∞ + 2 + 2ns)1/2 at large density (at constant v∞ and
ns). Superfluidity for all v∞ < 1 is thus possible provided
U0F (σ ) > −(1 + 2ns )1/2. This turns out to be verified for a
very wide range of negative values of U0F (σ ) provided ns is
large, which is actually the case in the experiment of Ref. [20]
(see note [68]).

APPENDIX C: DERIVATION OF EQS. (8)–(10)

Up to second order in 1/σ � 1, one has U (x) = U0[1 +
f ′′(0)x2/(2σ 2)]. Given such a quasi-flat potential, it is natural
to assume that n(x) weakly deviates from n0 with deriva-
tives scaling as positive powers of 1/σ . In this Appendix,
we detail the multiple-scale treatment of Eq. (4) leading to
Eqs. (8)–(10). To begin with, we derive the critical velocity for
superfluidity vc as resulting from the first, σ -independent term
in the expansion of U (x) written above. Then, we account for
the second, 1/σ 2 term and perturbatively obtain the leading
σ dependence of vc. Our calculations generalize the ones
performed in Ref. [38] for g(n) = n.

At zeroth order in 1/σ , U (x) = U0 and n(x) = n0 for all x.
In this case, defining

U (n, v∞) = v2
∞
2

(
1 − 1

n2

)
+ g(1) − g(n), (C1)

Eq. (4) reduces to the simple algebraic equation U (n0, v∞) =
U0. This equation corresponds to the zeroth order of the

FIG. 8. Same as Fig. 7 but for U (n0, v∞) given by Eq. (C1).
In this case, ñ0(v∞) = 1/3, n0,min(v∞) � 0.526, and Umax(v∞) �
0.294. The values of U0 considered on the plot are U0 = 0.15 (upper
line) and U0 = −0.15 (lower line).

so-called hydraulic approximation of Eq. (4) (see, e.g.,
Ref. [70]). Under what condition on v∞ do the solutions n0

of this equation, hence superfluidity, exist? To answer this
question, we reason in the same way as in Appendix B from
the plot of U (n0, v∞) as a function of n0 at a fixed v∞.
Figure 8 shows it for the same value of v∞ and the same
g(n) as the ones used in Fig. 7.

When U0 > 0 (repulsive obstacle potential), the critical
velocity v̄c is given by an equation similar to Eq. (B3):

Umax(v̄c) = U0, (C2)

where the maximum Umax(v∞) of U (n0, v∞) is reached at a
n0 = n0,min(v∞) solution of Un0 [n0,min(v∞), v∞] = 0, i.e.,

g′[n0,min(v∞)]n3
0,min(v∞) = v2

∞. (C3)

Equations (C1)–(C3) are basically Eqs. (9) and (10). Equation
(C2) is especially simple in the case where g(n) = nν/ν [44]:

1

ν
− 1

2

(
2 + ν

ν
v̄

2ν
2+ν
c − v̄

2
c

)
= U0, (C4)

the ν = 1 version of which may be found in, e.g.,
Refs. [38,70].

When U0 < 0 (repulsive obstacle potential), we find again
that v̄c = 1 for all U0 (more precisely for all U0 > −(1 +
2ns )/2 in the case of the saturable g(n) used in Fig. 8, the
right-hand side of this inequality being still very negative in a
recent experiment [20,68]). Compared to Fig. 7, two n0’s are
possible when U0 < 0. The physical one is the largest for the
same reason as the one invoked in Appendix B.

We now account for the 1/σ 2 term in the series expansion
of U (x) written above and search for the corresponding crit-
ical velocity vc = v̄c + δvc, where δvc is a small correction
to v̄c which must depend on U0, f ′′(0), and σ . We restrict
the calculations to the case of a repulsive obstacle potential
[U0 > 0 and f ′′(0) < 0], for which v̄c is not trivial. We start
by considering small departures of v∞ and n(x) from v̄c

and n0 = n0,min(v̄c) = n̄0,c, respectively: v∞ = v̄c + δv∞ and
n(x) = n̄0,c + δn(x). After substitution into Eq. (4), we get,
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at the first nonzero order in δn(x) and δv∞, the following
nonlinear differential equation for δn(x):

δn′′ − 2αδn2 = −2β

σ 2
x2 + 4γ δv∞, (C5)

where α = 3v̄2
c /n̄3

0,c + g′′(n̄0,c)n̄0,c > 0, β = U0| f ′′(0)|n̄0,c,
and γ = v̄c(1/n̄0,c − n̄0,c).

A trivial scale analysis of Eq. (C5) shows that x = O(σ 1/3),
δn(x) = O(1/σ 2/3), and δv∞ = O(1/σ 4/3). This makes it
possible to rescale it in the form

�n′′ − �n2 = −X 2 + �v∞, (C6)

where we have defined X = 21/3α1/6β1/6 × x/σ 1/3, �n(X ) =
21/3α2/3β−1/3 × σ 2/3δn(x), and �v∞ = 25/3α1/3β−2/3γ ×
σ 4/3δv∞. Implementing a relaxation algorithm similar to the
one sketched in Sec. V, we numerically find that the solu-
tions �n(X ) of Eq. (C6) exist as long as −∞ < �v∞ < C �
1.466, which was also established in Ref. [38]. We then infer
that the first nonzero correction to v̄c reads

δvc = C

2
5
3

β
2
3

α
1
3 γ

1

σ
4
3

, (C7)

which is nothing but vc − v̄c given in Eq. (8).

APPENDIX D: DERIVATION OF EQ. (11)

In this Appendix, we evaluate the (conserved) current den-
sity j = Im[ψ∗(x)ψ ′(x)] associated with the solution ψ (x) of
the nondissipative and stationary version of Eq. (1),

μψ = −1

2
ψ ′′ + U (x)ψ + g(|ψ |2)ψ, (D1)

in the case where the obstacle potential U (x) = U0 f (|x|/σ )
is both strongly repulsive (large U0 > 0) and slowly varying
(large σ ). Units are those used in the main text.

In the presence of such a large-amplitude potential, j must
be very small. Therefore, it is possible to obtain its leading
behavior without accounting for the flux at infinity in its
derivation. In this approximation, one has μ = g(1) for the
energy of the stationary state of the fluid. Regarding the cor-
responding wave function ψ (x), we search for it in the form

ψ (x) = ψL(x) exp(iθL) + ψR(x) exp(iθR), (D2)

where the “L” (“R”) component, solution of Eq. (D1) with a
x-dependent modulus ψL(x) [ψR(x)] and a constant phase θL
(θR), describes the fluid at left (right) of its density dip, that
is, for x < 0 (x > 0). In the following, we mainly focus on the
left solution (the right solution is straightforwardly deduced
by symmetry) and denote by −xcl < 0 the classical turning
point of the fluid in this region of space: U (−xcl ) = μ (xcl is
its classical turning point for x > 0). The calculations below
are inspired by Ref. [61].

Deep in the classical, x � −xcl region where μ > U (x),
U (x) varies so slowly that the kinetic term in Eq. (D1) can be
neglected (Thomas-Fermi approximation). In this case, ψL(x)
is implicitly given by

g
[
ψ2

L(x)
] = μ − U (x). (D3)

Deep in the classically forbidden, x � −xcl region where
μ < U (x), U (x) is so strong that this time it is the nonlinear

term in Eq. (D1) that can be neglected. In this case, ψL(x)
obeys the Schrödinger equation μψL = −ψ ′′

L/2 + U (x)ψL. In
the limit σ � 1, this equation can be solved in the coordinate
x̃ = x/σ by the ansatz ψL(x̃) = exp[σ

∫
dx̃ k(x̃)] with k(x̃) =∑

��0 k�(x̃)/σ �. To � = 1 order, this gives the well-known
WKB (or semiclassical) solution

ψL(x) = α

2
1
4

exp
{−√

2
∫ x
−xcl

dx′ [U (x′) − μ]
1
2
}

[U (x) − μ]
1
4

, (D4)

where α is an integration constant which depends on the
parameters of the obstacle potential. We determine it at the
end of this Appendix in the case where g(|ψ |2) = |ψ |2ν/ν,
for which the result is explicit. By symmetry, one has ψR(x) =
ψL(−x) for all x > 0.

The Thomas-Fermi solution (D3) and its symmetric for
x > 0 contribute negligibly to the current density since they
are slowly varying functions of x. Hence, j is mainly ruled
by the WKB solutions ψL(x) and ψR(x) = ψL(−x) given
by Eq. (D4), i.e., by the wave function of the fluid in the
classically forbidden, −xcl < x < xcl region. Straightforward
manipulations yield the Josephson-type relation

j = jc sin(θR − θL), (D5)

where jc = ψL(x)ψ ′
R(x) − ψ ′

L(x)ψR(x) is indeed x indepen-
dent, given by

jc = 2α2 exp

{
−

√
2

∫ xcl

−xcl

dx [U (x) − μ]
1
2

}
. (D6)

Since the dimensionless quantities j and v∞ coincide [the
current density is also expressed as j = n(x)v(x) and is con-
served], the maximum current density (D6) for tunneling
across the barrier is nothing but the critical velocity vc for
superfluidity past the obstacle. By defining A = 2α2, we end
up with Eq. (11) of the main text.

In this concluding paragraph, we establish the dependence
of the integration constant α on the parameters of the obstacle
potential by numerically matching Eq. (D3) to Eq. (D4) in
a neighbourhood of −xcl where U (x) = μ + U ′(−xcl )(x +
xcl ) + o(x + xcl ) is in good approximation an increasing linear
function of x. We specifically focus on the nonlinear potential
g(|ψ |2) = |ψ |2ν/ν for which the result is explicit. In this
neighbourhood of −xcl and for this nonlinearity, Eq. (D1) for
the left wave function can be expressed in the form

φ′′
L − χφL − φ1+2ν

L = 0, (D7)

where χ = (x + xcl )/δ and φL(χ ) = (2δ2/ν)1/(2ν)ψL(x) with
δ = [2U ′(−xcl )]−1/3. According to what precedes, when χ →
−∞, φL(χ ) should be given by the Thomas-Fermi solution of
Eq. (D7):

φL(χ ) = (−χ )1/(2ν). (D8)

On the other hand, when χ → +∞, φL(χ ) should be solution
of the linear version of Eq. (D7), which is the well-known
Airy differential equation whose solution ανAi(χ ) asymptoti-
cally behaves as

φL(χ ) = αν

2
√

π

exp
( − 2

3χ
3
2
)

χ
1
4

, (D9)
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where αν is a constant which we adjust so that the numerical
solution of Eq. (D7) interpolates the asymptotic behaviors
(D8) and (D9). For example, we find α1 � 1.407 and α1/2 �
1.306 for the two nonlinearities of the second paragraph of
Appendix A. By making Eqs. (D4) and (D9) coincide at
the right border of the neighbourhood of −xcl [this is easily
done by recognizing that the argument of the exponential in

Eq. (D9) is the opposite of the antiderivative of
√

χ ], we
eventually get

α = ν
1

2ν αν

2
1+5ν

6ν

√
π

U ′(−xcl )
2+ν
6ν , (D10)

hence A ∝ U ′(−xcl )(2+ν)/(3ν) for the amplitude of the expo-
nential in Eq. (D6).
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